recursion induction - significado y definición. Qué es recursion induction
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es recursion induction - definición

MATHEMATICAL CONCEPT
Transfinite recursion; Transfinite Induction; Well-ordered induction; Transfinite iteration

transfinite induction         
<mathematics> Induction over some (typically large) ordinal. (1995-03-30)
Transfinite induction         
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC.
Induced current         
  • A current clamp
  • alt=
  • left
  • left
  • left
  • left
  • A solenoid
PRODUCTION OF VOLTAGE BY A VARYING MAGNETIC FIELD
Faraday-Lenz law; Induces; Magnetic Induction; Faraday's law induction; Electric mutual inductivity; Magnetic mutual inductivity; Magnetic self-inductivity; Electric self-inductivity; Induction (electricity); Faraday's Induction Law; Induction (electricity and magnetism); Induced current; Faraday's Law of Induction; Faraday's Law Of Induction; Faradays law; Parasitic induction; Faraday's Laws of Induction; Faradays Law; Induksioni Elektromagnetik; Faraday's law of electromagnetic induction; EM induction; Faraday–Lenz law; Magneto-induction
·add. ·- A current due to variation in the magnetic field surrounding its conductor.

Wikipedia

Transfinite induction

Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC.